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ABSTRACT

The success of deep ensembles on improving predictive performance, uncertainty
estimation, and out-of-distribution robustness has been extensively studied in the
machine learning literature. Albeit the promising results, naively training multi-
ple deep neural networks and combining their predictions at inference leads to
prohibitive computational costs and memory requirements. Recently proposed
efficient ensemble approaches reach the performance of the traditional deep en-
sembles with significantly lower costs. However, the training resources required
by these approaches are still at least the same as training a single dense model.
In this work, we draw a unique connection between sparse neural network train-
ing and deep ensembles, yielding a novel efficient ensemble learning framework
called FreeT ickets. Instead of training multiple dense networks and averaging
them, we directly train sparse subnetworks from scratch and extract diverse yet
accurate subnetworks during this efficient, sparse-to-sparse training. Our frame-
work, FreeT ickets, is defined as the ensemble of these relatively cheap sparse
subnetworks. Despite being an ensemble method, FreeT ickets has even fewer
parameters and training FLOPs than a single dense model. This seemingly counter-
intuitive outcome is due to the ultra training/inference efficiency of dynamic sparse
training. FreeT ickets surpasses the dense baseline in all the following criteria:
prediction accuracy, uncertainty estimation, out-of-distribution (OoD) robustness,
as well as efficiency for both training and inference. Impressively, FreeT ickets
outperforms the naive deep ensemble with ResNet50 on ImageNet using around
only 1/5 of the training FLOPs required by the latter. We have released our source
code at https://github.com/VITA-Group/FreeTickets.

1 INTRODUCTION

Ensembles (Hansen & Salamon, 1990; Levin et al., 1990) of neural networks have received large
success in terms of the predictive accuracy (Perrone & Cooper, 1992; Breiman, 1996; Dietterich,
2000; Xie et al., 2013), uncertainty estimation (Fort et al., 2019; Lakshminarayanan et al., 2017; Wen
et al., 2020; Havasi et al., 2021), and out-of-distribution robustness (Ovadia et al., 2019a; Gustafsson
et al., 2020). Given the fact that there are a wide variety of local minima solutions located in the high
dimensional optimization landscape of deep neural networks and various randomness (e.g., random
initialization, random mini-batch shuffling) occurring during training, neural networks trained with
different random seeds usually converge to different low-loss basins with similar error rates (Fort
et al., 2019; Ge et al., 2015; Kawaguchi, 2016; Wen et al., 2019). Deep ensembles, combining
the predictions of these low-loss networks, achieve large performance improvements over a single
network (Huang et al., 2017; Garipov et al., 2018; Evci et al., 2020b).

Despite the promising performance improvement, the traditional deep ensemble naively trains multiple
deep neural networks independently and ensembles them, whose training and inference cost increases
linearly with the number of the ensemble members. Recent works on efficient ensembles are able
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Figure 1: Illustration of FreeT ickets with EDST Ensemble as an example. EDST Ensemble, consisting of
one exploration phase and M sequential refinement phases, produces M diverse subnetworks with very low cost
(hence called “free tickets”). By combining all these free tickets, EDST Ensemble matches the performance of
the dense ensemble with only half of FLOPs required to train a single dense model.

to reach the performance of dense ensembles with negligible overhead compared to a single dense
model (Wen et al., 2020; Wenzel et al., 2020; Havasi et al., 2021). However, the training resources
required by these approaches are still at least the same as training a single dense model. Since the
size of advanced deep neural networks is inevitably exploding (Touvron et al., 2020; Dosovitskiy
et al., 2021; Brown et al., 2020; Touvron et al., 2021), the associated enormous training costs are
potentially beyond the reach of most researchers and startups, leading to financial and environmental
concerns (Garcı́a-Martı́n et al., 2019; Schwartz et al., 2019; Strubell et al., 2019).

On the other hand, researchers have recently explored the possibility of directly training sparse neural
networks from scratch (Mocanu et al., 2016; Liu et al., 2020a; Evci et al., 2019), while trying to
maintain comparable performance. Training a sparse network from scratch typically results in worse
performance than the traditional network pruning (Kalchbrenner et al., 2018; Evci et al., 2019), with
the exception of Dynamic Sparse Training (DST) (Mocanu et al., 2018; Evci et al., 2020a; Liu et al.,
2021c;a). Instead of inheriting weights from dense networks, DST starts from a randomly-initialized
sparse network and optimizes the model weights together with the sparse connectivity during training.
However, the current only way for DST to match the performance of its dense counterpart on the
popular benchmark, e.g., ResNet-50 on ImageNet, is to extend the training time (Evci et al., 2020a),
which might require thousands of training epochs for extremely sparse models (Liu et al., 2021c).

In this paper, we attempt to address the above-mentioned two challenges jointly by drawing a unique
connection between sparse training and deep ensembles. Specifically, we ask the following question:

Instead of allocating all resources to find a strong winning ticket, can we find many weak tickets
with very low costs (free tickets), such that the combination of these free tickets can significantly
outperform the single dense network, even the dense ensemble?

Note that it is not trivial to obtain free tickets. To guarantee superior ensemble performance, three key
desiderata that the free tickets are expected to satisfy (1) high diversity: according to the ensemble
theory (LeCun et al., 2015; Hansen & Salamon, 1990; Ovadia et al., 2019b), higher diversity among
ensemble members leads to higher predictive performance; (2) high accessibility: free tickets should
be cheap to obtain so that the overall training cost does not compromise too much; and (3) high
expressibility: the performance of each free ticket should be comparable with the dense model.

Leveraging the insight from Liu et al. (2020b) that a full network contains a plenitude of perfor-
mative subnetworks that are very different in the topological space, we introduce the concept of
FreeT ickets, an efficient ensemble framework that utilizes sparse training techniques to create cheap
yet accurate subnetworks for ensemble. Furthermore, we instantiate FreeT ickets by proposing two
efficient ensemble methods – Dynamic Sparse Training Ensemble (DST Ensemble) and Efficient
Dynamic Sparse Training Ensemble (EDST Ensemble). Both methods yield diverse subnetworks that
consummately satisfy the above-mentioned criteria. We summarize our contributions below:

• Our first method, DST Ensemble, independently trains multiple subnetworks from scratch
with dynamic sparsity. By averaging the predictions of these subnetworks, DST Ensemble
improves the predictive accuracy, OoD robustness, uncertainty estimation, and efficiency
over the traditional dense ensemble.

• Our second, light-weight method ( EDST Ensemble) yields many free tickets in one single
run, which is more efficient to train and test than a single dense model, while approaching
the performance of the traditional dense ensemble.
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• We analyze the diversity of the individual subnetworks generated by our methods and
confirm the effectiveness of our methods on inducing model diversity.

• Our results suggest that besides the training/inference efficiency, sparse neural networks
also enjoy other favorable properties which are absent in dense networks (robustness, out-of-
distribution generalization, etc), opening the path for new research directions.

2 RELATED WORKS

Efficient Ensembles. One major limitation of ensembles is the expensive computational and memory
costs for both training and testing. To address this problem, various approaches have been proposed.
TreeNet (Lee et al., 2015) shares weights in earlier layers and splits the following model into several
branches, improving accuracy over the dense ensemble. Monte Carlo Dropout (Gal & Ghahramani,
2016) can be used to approximate model uncertainty in deep learning without sacrificing either
computational complexity or test accuracy. BatchEnsemble (Wen et al., 2020) was proposed to
improve parameter efficiency by decomposing the ensemble members into the product of a shared
matrix and a rank-one matrix personalized for each member. MIMO (Havasi et al., 2021) uses a
multi-input multi-output configuration to concurrently discover subnetworks that co-habit the dense
network without explicit separation. Snapshot (Huang et al., 2017) and FGE (Garipov et al., 2018)
discover diverse models by using cyclical learning rate schedules. Furlanello et al. (2018) applied
knowledge distillation (Hinton et al., 2015) to train several generations of dense students. The
ensemble of the dense students outperforms the teacher model significantly. Other related works
include but are not limited to hyper-batch ensembles (Wenzel et al., 2020) and Late Phase (Oswald
et al., 2021). However, the training resources required by these methods are still at least the same as
training a single dense model. In contrast to the existing efficient ensemble methods, our methods
(EDST Ensemble) can match the performance of naive ensemble with only a fraction of the resources
required by training a single dense network.

Dynamic Sparse Training. Dynamic Sparse Training (DST) is a class of methods that enables
training sparse neural networks from scratch by optimizing the sparse connectivity and the weight
values simultaneously during training. DST stems from Sparse Evolutionary Training (SET) (Mocanu
et al., 2018), a sparse training algorithm that outperforms training a static sparse model from
scratch (Mocanu et al., 2016; Evci et al., 2019). Weight reallocation was further proposed in Mostafa
& Wang (2019); Dettmers & Zettlemoyer (2019); Liu et al. (2021b) to reallocate new weights
across layers for better layer-wise sparsity. Further, Dettmers & Zettlemoyer (2019); Evci et al.
(2020a) leverage the gradient information in the backward pass to guide the optimization of sparse
connectivity and demonstrate substantial performance improvement. Some recent works (Jayakumar
et al., 2020; Raihan & Aamodt, 2020; Liu et al., 2021c) demonstrate that a large range of exploration
in the parameter space is important for dynamic sparse training. Price & Tanner (2021) improved
the performance of DST by adding additional non-trainable parameters. DST has also demonstrated
its strength in feature detection (Atashgahi et al., 2021), lifelong learning (Sokar et al., 2021),
federated learning (Zhu & Jin, 2019; Bibikar et al., 2022; Huang et al., 2022), and adversarial
training (Özdenizci & Legenstein, 2021). Sparse MoE (Shazeer et al., 2017; Fedus et al., 2021)
sparsely activates one of the few expert networks to increase the model capacity – but with a constant
computational cost. It usually requires specialized modules, such as gating and selector networks to
perform the sparsification.

3 FREETICKETS

3.1 PRELIMINARIES

Dynamic Sparse Training. Let’s consider an i.i.d. classification setting with data {(xi, yi)}Ni=1,
where x usually denotes input samples and y the corresponding labels. For a network f(x;θ)

parameterized by θ ∈ Rd, we train f(x;θ) to solve the following optimization problem: θ̂ =

arg minθ

∑N
i=1 L(f(xi;θ), yi).

Dynamic sparse training (DST) starts with a randomly-initialized sparse neural network f(x;θs),
parameterized by a fraction of parameters θs. The sparsity level of the model is pre-defined as
S = 1− ‖θs‖0

‖θ‖0 , where ‖ · ‖0 is the `0-norm. The goal of DST is to yield a sparse network with the
target sparsity S after training, while maintaining the overall computational and memory overheads
close to training a static sparse model (fixed sparse connectivity).
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During training, DST continuously minimizes the loss
∑N

i=1 L(f(xi;θs), yi), while periodically
exploring the parameter space for better sparse connectivity with non-differentiable heuristics. A
common exploration heuristics is prune-and-grow, that is, pruning a fraction p of the unimportant
weights from θs, followed by regrowing the same number of new weights. By repeating this
prune-and-grow cycle, DST keeps searching for better sparse connectivities while sticking to a fixed
parameter budget. See Appendix A for the general pseudocode and a brief literature review of DST.

3.2 FREETICKETS ENSEMBLE

We propose the concept of FreeT ickets here. FreeT ickets refers to efficient ensemble methods
that utilize DST to generate subnetworks for the ensemble. A free ticket is a converged subnetwork
created by sparse training methods. These free tickets {θ1

s , θ
2
s , . . . θ

M
s }, observed and collected either

within one training run (EDST Ensemble) or multiple training runs (DST Ensemble), are further used
to construct the FreeT ickets Ensemble. Assuming that the probability of the kth output neuron in
the classifier of the jth free ticket is given by p(ajk). Then the corresponding output probability in the
ensemble is given by taking the average across all the M subnetworks, i.e., 1

M

∑M
j=1 p(a

j
k).

Compared with the existing efficient ensemble techniques (Huang et al., 2017; Wen et al., 2020),
FreeT ickets induces diversity inspired by the observations that there exist many performant sub-
networks with very different sparse topologies located in the full network (Liu et al., 2020b). The
efficiency of FreeT ickets comes from the fact that each subnetwork is sparse from the beginning,
so that the memory and floating-point operations (FLOPs) required by FreeT ickets can be even
fewer than training a single dense network. To realize the concept of FreeT ickets, we introduce
two DST-based ensemble methods, DST Ensemble and EDST Ensemble, as described below.

3.2.1 DST ENSEMBLE

Dynamic Sparse Training Ensemble (DST Ensemble) is presented in Algorithm 2, Appendix B. It
takes advantage of the training efficiency from DST and independently trains M sparse networks with
DST from scratch. By averaging the predictions of each sparse neural network, DST Ensemble can
improve the predictive accuracy and uncertainty estimation significantly. Except for the common
diversity producers, i.e., random initializations and random stochastic gradient descent (SGD) noise,
each DST run converges to different sparse connectivities, promoting even higher diversity over the
naive dense Ensemble.

We choose the advanced DST method the Rigged Lottery (RigL) (Evci et al., 2020a) for DST
Ensemble. RigL contains three main steps: sparse initialization, model weight optimization, and
parameter exploration.

Sparse Initialization. Each subnetwork is randomly initialized with the Erdős-Rényi-Kernel
(ERK) (Mocanu et al., 2018; Evci et al., 2020a) distribution at sparsity of S. The sparsity level
of layer l is scaled with 1− nl−1+nl+wl+hl

nl−1×nl×wl×hl , where nl refers to the number of neurons/channels of
layer l; wl and hl are the width and the height of the convolutional kernel in layer l. ERK allocates
higher sparsities to the layers with more parameters.

Model Weight Optimization. After initialization, the activated weights are optimized by the standard
optimizer SGD with momentum (Sutskever et al., 2013; Polyak, 1964) and the non-activated weights
are forced to zero.

Parameter Exploration. After every ∆T iterations of training, we perform parameter exploration
once to adjust the sparse connectivity. More concretely, we first prune a fraction p of weights from
θs with the smallest magnitude:

θ′s = TopK(|θs|, 1− p) (1)

where TopK(v, k) returns the weight tensor retaining the top k-proportion of elements from v.
Immediately after pruning, we grow the same number of new weights back which have the highest
gradient magnitude:

θs = θ′s ∪ TopK(|gi/∈θ′s |, p) (2)

where gi/∈θ′s are the gradients of the zero weights. We follow the suggestions in Liu et al. (2021c)
and choose p = 0.5 and a large update interval ∆T = 1000 for CIFAR-10/100 and ∆T = 4000 for
ImageNet to encourage an almost full exploration of all network parameters.
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3.2.2 EDST ENSEMBLE

While efficient, the number of training runs (complete training phases) required by DST Ensemble
increases linearly with the number of subnetworks, leading to an increased device count and resource
requirements. To further reduce the training resources and the number of training runs, we propose
Efficient Dynamic Sparse Training Ensemble (EDST Ensemble) to yield many diverse subnetworks
in one training run. The overall training procedure of EDST Ensemble is summarized in Algorithm 3.

The challenge of producing many free tickets serially in one training run is how to escape the current
local basin during the typical DST training. Here, we force the model to escape the current basin by
significantly changing a large fraction of the sparse connectivity, like adding significant perturbations
to the model topology. The training procedure of EDST Ensemble is one end-to-end training run
consisting of one exploration phase followed by M consecutive refinement phases. The M refinement
phases are performed sequentially one after another within one training run.

Exploration phase. We first train a sparse network with DST using a large learning rate of 0.1 for a
time of tex. The goal of this phase is to explore a large range of the parameter space for a potentially
good sparse connectivity. Training with a large learning rate allows DST to validly search a larger
range of the parameter space, as the newly activated weights receive large updates and become more
competitive at the next pruning iteration.

Refinement phase. After the exploration phase, we equally split the rest of training time by M to
collect M free tickets. At each refinement phase, the current subnetwork is refined from the converged
subnetwork in the previous phase (the first subnetwork is refined from the exploration phase) and
then trained with learning rates 0.01 followed by 0.001 for a time of tre. Once the current subnetwork
is converged, we use a large global exploration rate q = 0.8 1 and a larger learning rate of 0.01 to
force the converged subnetwork to escape the current basin. We repeat this process several times
until the target number of free tickets is reached. The number of subnetworks M that we obtain at
the end of training is given by M = ttotal−tex

tre
. See Appendices I and J for the effect of the global

exploration rate q and the effect of different regrowth criteria on EDST Ensemble, respectively.

Different from DST Ensemble, the diversity of EDST Ensemble comes from the different sparse
subnetworks the model converges to during each refinement phase. The number of training FLOPs
required by EDST Ensemble is significantly smaller than training an individual dense network, as
DST is efficient and the exploration phase is only performed once for all ensemble learners.

4 EXPERIMENTAL RESULTS

In this section, we demonstrate the improved predictive accuracy, robustness, uncertainty esti-
mation, and efficiency achieved by FreeT ickets. We mainly follow the experimental setting of
MIMO (Havasi et al., 2021), shown below.

Baselines. We compare our methods against the dense ensemble, and various state-of-the-art ef-
ficient ensemble methods in the literature, including MIMO (Havasi et al., 2021), Monte Carlo
Dropout (Gal & Ghahramani, 2016), BatchEnsemble (Wen et al., 2020), TreeNet (Lee et al., 2015),
Snapshop (Huang et al., 2017), and FGE (Garipov et al., 2018).

Moreover, to highlight the fact that the free tickets are non-trivial to obtain, we further implement
three sparse network ensemble methods: Static Sparse Ensemble (naively ensemble M static sparse
networks), Lottery Ticket Rewinding Ensemble (LTR Ensemble; Frankle et al. (2020)) (ensemble M
winning tickets2 trained with the same mask but different random seeds), and pruning and fine-tuning
(PF Ensembles; Han et al. (2015)). While Static Sparse Ensemble can be diverse and efficient, it
does not satisfy the high expressibility property (Evci et al., 2019). LTR Ensemble suffers from low
diversity and prohibitive costs. PF Ensemble requires at least the same training FLOPs as the dense
ensemble. See Appendix C for their implementation and hyperparameter details.

Architecture and Dataset. We evaluate our methods mainly with Wide ResNet28-10 (Zagoruyko &
Komodakis, 2016) on CIFAR-10/100 and ResNet-50 (He et al., 2016) on ImageNet.

1To be distinct with the standard exploration rate in DST, we define q as the global exploration rate.
2We rewind the tickets to the weights at 5% epoch as used in Frankle et al. (2020); Chen et al. (2021b).
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Metrics. To measure the predictive accuracy, robustness, and efficiency, we follow the Uncertainty
Baseline3 and report the overall training FLOPs required to obtain all the subnetworks including
forward passes and backward passes. See Appendix D for more details on the metrices used.
Table 1: Wide ResNet28-10/CIFAR10: we mark the best results of one-pass efficient ensemble in bold and the
best results of multi-pass efficient ensemble in blue. Results with ∗ are obtained from Havasi et al. (2021).

Methods Acc (↑) NLL (↓) ECE (↓) cAcc (↑) cNLL (↓) cECE (↓) # Training
FLOPs (↓)

# Training
runs (↓)

Single Dense Model∗ 96.0 0.159 0.023 76.1 1.050 0.153 3.6e17 1
Monte Carlo Dropout∗ 95.9 0.160 0.024 68.8 1.270 0.166 1.00× 1
MIMO (M = 3)∗ 96.4 0.123 0.010 76.6 0.927 0.112 1.00× 1
EDST Ensemble (M = 3) (S = 0.8) (Ours) 96.3 0.127 0.012 77.9 0.814 0.093 0.61× 1
EDST Ensemble (M = 7) (S = 0.9) (Ours) 96.1 0.122 0.008 77.2 0.803 0.081 0.57× 1

TreeNet (M = 3)∗ 95.9 0.158 0.018 75.6 0.969 0.137 1.52× 1.5
BatchEnsemble (M = 4)∗ 96.2 0.143 0.021 77.5 1.020 0.129 1.10× 4
LTR Ensemble (M = 3) (S = 0.8) 96.2 0.133 0.015 76.7 0.950 0.118 1.75× 4
Static Sparse Ensemble (M = 3) (S = 0.8) 96.0 0.133 0.014 76.2 0.920 0.098 1.01× 3
PF Ensemble (M = 3) (S = 0.8) 96.4 0.129 0.011 78.2 0.801 0.082 3.75× 6
DST Ensemble (M = 3) (S = 0.8) (Ours) 96.3 0.122 0.010 78.8 0.766 0.075 1.01× 3

Dense Ensemble (M = 4)∗ 96.6 0.114 0.010 77.9 0.810 0.087 4.00× 4

Table 2: Wide ResNet28-10/CIFAR100: we mark the best results of one-pass efficient ensemble in bold and the
best results of multi-pass efficient ensemble in blue. Results with ∗ are obtained from Havasi et al. (2021).

Methods Acc (↑) NLL (↓) ECE (↓) cAcc (↑) cNLL (↓) cECE (↓) # Training
FLOPs (↓)

# Training
runs (↓)

Single Dense Model∗ 79.8 0.875 0.086 51.4 2.700 0.239 3.6e17 1
Monte Carlo Dropout∗ 79.6 0.830 0.050 42.6 2.900 0.202 1.00× 1
MIMO (M = 3)∗ 82.0 0.690 0.022 53.7 2.284 0.129 1.00× 1
EDST Ensemble (M = 3) (S = 0.8) (Ours) 82.2 0.672 0.034 54.0 2.156 0.137 0.61× 1
EDST Ensemble (M = 7) (S = 0.9) (Ours) 82.6 0.653 0.036 52.7 2.410 0.170 0.57× 1

TreeNet (M = 3)∗ 80.8 0.777 0.047 53.5 2.295 0.176 1.52× 1.5
BatchEnsemble (M = 4)∗ 81.5 0.740 0.056 54.1 2.490 0.191 1.10× 4
LTR Ensemble (M = 3) (S = 0.8) 82.2 0.703 0.045 53.2 2.345 0.180 1.75× 4
Static Sparse Ensemble (M = 3) (S = 0.8) 82.4 0.691 0.035 52.5 2.468 0.167 1.01× 3
PF Ensemble (M = 3) (S = 0.8) 83.2 0.639 0.020 54.2 2.182 0.115 3.75× 6
DST Ensemble (M = 3) (S = 0.8) (Ours) 83.3 0.623 0.018 55.0 2.109 0.104 1.01× 3

Dense Ensemble (M = 4)∗ 82.7 0.666 0.021 54.1 2.270 0.138 4.00× 4

Table 3: ResNet50/ImageNet: we mark the best results of one-pass efficient ensemble in bold and the best results
of multi-pass efficient ensemble in blue. Results with ∗ are obtained from Havasi et al. (2021).

Methods Acc (↑) NLL (↓) ECE (↓) cAcc (↑) cNLL (↓) cECE (↓) aAcc (↑) aNLL (↓) aECE (↓) Training
FLOPs (↓)

# Training
runs (↓)

Single Dense Model∗ 76.1 0.943 0.039 40.5 3.200 0.105 0.7 8.09 0.43 4.8e18 1
MIMO (M = 2) (ρ = 0.6)∗ 77.5 0.887 0.037 43.3 3.030 0.106 1.4 7.76 0.43 1.00× 1
EDST Ensemble (M = 2) (S = 0.8) (Ours) 76.9 0.974 0.060 41.3 3.074 0.055 3.7 4.90 0.37 0.48× 1
EDST Ensemble (M = 4) (S = 0.8) (Ours) 77.7 0.935 0.064 42.6 2.987 0.058 4.0 4.74 0.35 0.87× 1

TreeNet (M = 2)∗ 78.1 0.852 0.017 42.4 3.052 0.073 − − − 1.33× 1.5
BatchEnsemble (M = 4)∗ 76.7 0.944 0.050 41.8 3.180 0.110 − − − 1.10× 4
DST Ensemble (M = 2) (S = 0.8) (Ours) 78.3 0.914 0.060 43.7 2.910 0.057 4.8 4.69 0.35 1.12× 2

Dense Ensemble (M = 4)∗ 77.5 0.877 0.031 42.1 2.990 0.051 − − − 4.00× 4

Results. The metrics on CIFAR-10/100 and ImageNet are reported in Table 1, Table 2, and Table 3,
respectively. For a fair comparison, we mainly set M of our methods the same as the one used in
MIMO. See Appendix E for the comparison between Snapshot, FGE, and our methods.

With multiple training runs, DST Ensemble consistently outperforms other efficient ensemble meth-
ods, even the dense ensemble on accuracy, robustness, and uncertainty estimation, while using only
1/4 of the training FLOPs compared to the latter. When the number of training runs is limited to
1, EDST Ensemble consistently outperforms the single dense model by a large margin, especially
in terms of accuracy, with only 61% training FLOPs. Moreover, we observe that the performance
of EDST Ensemble can further be improved by increasing the sparsity level. For instance, with a
high sparsity level S = 0.9, EDST Ensemble can collect 7 subnetworks, more than twice as many as
S = 0.8. Combining the prediction of these sparser subnetworks boosts the performance of EDST
Ensemble towards the dense ensembles with only 57% training FLOPs, beyond the reach of any
efficient ensemble methods. More impressively, DST Ensemble achieves the best performance on
uncertainty estimation and OoD robustness among various ensemble methods.

As we expected, Static Sparse Ensemble and LTR Ensemble consistently have inferior ensemble
performance compared with DST Ensemble. While PF Ensemble achieves comparable performance

3https://github.com/google/uncertainty-baselines
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with DST Ensemble, its costly procedure requires more than triple the FLOPs of DST Ensemble.
We argue that LTR is not suitable for FreeT ickets since (1) it starts from a dense network, with
the costly iterative train-prune-retrain process. Hence it is more expensive than training a dense
network, in contrary to our pursuit of efficient training (our method sticks to training sparse networks
end-to-end); (2) The series of sparse subnetworks yielded by iterative pruning is not diverse enough,
since the latter sparse masks are always pruned from and thus nested in earlier masks (Evci et al.,
2020b). Evci et al. (2020b) show that the different runs of winning tickets discovered by LTR are
always located in the same basin as the pruning solution. Consequently, the ensemble of LTR would
suffer from poor diversity, leading to poor ensemble performance. We observe a very similar pattern
in Section 5.1 as well. The diversity and performance of LTR Ensemble are lower than DST-based
ensembles, highlighting the importance of dynamic sparsity in sparse network ensembles.

5 FREE TICKETS ANALYSIS

5.1 DIVERSITY ANALYSIS

According to the ensembling theory (LeCun et al., 2015; Hansen & Salamon, 1990; Ovadia et al.,
2019b), more diversity among ensemble learners leads to better predictive accuracy and robustness.
We follow the methods used in Fort et al. (2019) and analyze the diversity of the subnetworks
collected by our methods in function space.

Concretely, we measure the pairwise diversity of the subnetworks collected by our methods on the
test data. The diversity is measured by Dd = E [d (P1(y|x1, · · · , xN),P2(y|x1, · · · , xN))] where
d(·, ·) is a metric between predictive distributions and (x, y) are the test set. We use two metrics (1)
Prediction Disagreement, and (2) Kullback–Leibler divergence.

Prediction Disagreement. Prediction Disagreement is defined as the fraction of test data the predic-
tion of models disagree on: ddis(P1,P2) = 1

N

∑N
i=1(arg maxŷi

P1(ŷi) 6= arg maxŷi
P2(ŷi)).

Kullback–Leibler (KL) Divergence. KL Divergence (Kullback & Leibler, 1951) is a metric that is
widely used to describe the diversity of two ensemble learners (Fort et al., 2019; Havasi et al., 2021),
defined as: dKL(P1,P2) = EP1 [logP1(y)− logP2(y)].

Table 4: Prediction disagreement and KL divergence among various sparse ensembles (M = 3, S = 0.8).
Wide ResNet28-10/CIFAR10 Wide ResNet28-10/CIFAR100

ddis (↑) dKL (↑) Acc (↑) ddis (↑) dKL (↑) Acc (↑)

LTR Ensemble 0.026 0.056 96.200 0.111 0.185 82.100
Static Ensemble 0.031 0.079 96.000 0.156 0.401 82.400
EDST Ensemble (Ours) 0.031 0.073 96.300 0.126 0.237 82.200
PF Ensemble 0.035 0.103 96.400 0.148 0.345 83.200
DST Ensemble (Ours) 0.035 0.095 96.300 0.166 0.411 83.300

Dense Ensemble 0.032 0.086 96.600 0.145 0.338 82.700

We report the diversity among various sparse network ensembles in Table 4. We see that DST
Ensemble achieves the highest prediction disagreement among various sparse ensembles, especially
on CIFAR-100 where its diversity even surpasses the deep ensemble. Even though EDST Ensemble
produces all subnetworks with one single run, its diversity approaches other multiple-run methods.
The diversity comparison with non-sparse ensemble methods is reported in Figure 2-Right. Again,
the subnetworks learned by DST Ensemble are more diverse than the non-sparse methods and the
diversity of EDST Ensemble is very close to the diversity of the dense ensemble, higher than the
other efficient ensemble methods e.g., TreeNet and BatchEnsemble.
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Wide ResNet28-10 on CIFAR-100
EDST Ensemble
LTR
DST Ensemble
Static

ddis (↑) dKL (↑)
TreeNet 0.010 0.010
BatchEnsemble 0.014 0.020
LTR Ensemble 0.026 0.057
EDST Ensemble (Ours) 0.031 0.073
MIMO 0.032 0.086
DST Ensemble (Ours) 0.035 0.095
Dense Ensemble 0.032 0.086

Figure 2: Left: KL divergence across intermediate feature maps of various sparse ensemble methods. Each
line is the averaged KL divergence among M = 3 subnetworks. Right: Diversity comparison between sparse
ensemble methods and non-sparse ensemble methods with Wide ResNet28-10 on CIFAR-10 (M = 3, S = 0.8).
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To better understand the source of disagreement, we apply KL divergence across intermediate feature
maps learned by different subnetworks in Figure 2-Left. Each line is the averaged KL divergence
among M = 3 subnetworks. It is interesting to observe that the KL divergence is quite high at early
layers for the DST Ensemble and the Static Ensemble, which implies that the source of their high
diversity might locate in the early layers. We further provide a disagreement breakdown for the first
ten classes in CIFAR-100 between different subnetworks in Appendix G. The overall breakdown
of disagreement is very similar to the diversity measurement results, i.e., DST Ensemble > Static
Ensemble > EDST Ensemble > LTR Ensemble. We share heatmaps of prediction disagreement of
DST/EDST ensemble in Appendix F.

5.2 TRAINING TRAJECTORY

In this section, we use t-SNE (Van der Maaten & Hinton, 2008) to visualize the diversity of sparse
networks discovered by our methods in function space. We save the checkpoints along the training
trajectory of each subnetwork and take the softmax output on the test data of each checkpoint to
represent the subnetwork’s prediction. t-SNE maps the prediction to the 2D space. From Figure 3 we
can observe that subnetworks of DST Ensemble converge to completely different local optima, and
the local optima converged by EDST Ensemble are relatively closer to each other. Interestingly, even
the last two subnetworks of EDST Ensemble (blue and green lines) start from similar regions, they
end up in two different optima.
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Figure 3: t-SNE projection of training trajectories of ensemble learners discovered by DST Ensemble and EDST
Ensemble with Wide ResNet28-10 on CIFAR-10/100. The sparsity level is S = 0.8.

5.3 ABLATION STUDY OF PARAMETER EXPLORATION

We conduct an ablation study to analyze the effect of parameter exploration on promoting the
model diversity. For comparison, we train the same number of subnetworks without any parameter
exploration. Shown in Table 5, without parameter exploration, the diversity and the ensemble accuracy
consistently decreases, highlighting the effectiveness of parameter exploration on inducing diversity.

Table 5: Ablation study of DST-based Ensemble with and without parameter exploration (M = 3, S = 0.8).
CIFAR10 CIFAR100

ddis (↑) dKL (↑) Acc (↑) ddis (↑) dKL (↑) Acc (↑)

EDST Ensemble (w/o Parameter Exploration) 0.017 0.042 96.000 0.081 0.148 81.800
EDST Ensemble 0.031 0.073 96.300 0.126 0.237 82.200

DST Ensemble (w/o Parameter Exploration) 0.031 0.079 96.000 0.156 0.401 82.400
DST Ensemble 0.035 0.095 96.300 0.166 0.411 83.300

5.4 EFFECT OF SPARSITY

We further study the effect of subnetworks sparsity on the ensemble performance and diversity, shown
in Figure 4. While the individual networks learned by DST Ensemble and EDST Ensemble achieve
similar test accuracy, the higher diversity of DST Ensemble boosts its ensemble performance over
the EDST Ensemble significantly, highlighting the importance of diversity for ensemble. What’s
more, it is clear to see that the pattern of the ensemble accuracy is highly correlated with the accuracy
of the individual subnetwork. This observation confirms our hypothesis in the introduction, that
is, high expressibility is also a crucial desideratum for free tickets to guarantee superior ensemble
performance. We further support our hypothesis with the Pearson correlation (Pearson, 1895) and the
Spearman correlation (Powers & Xie, 2008) between the accuracy of individual networks and their
ensemble accuracy in Appendix H.
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Figure 4: Performance and KL divergence of the subnetworks and the ensemble of subnetworks as sparsity
varies. The KL divergence is scaled to the test accuracy for better visualization.

5.5 EFFECT OF ENSEMBLE SIZE

In this section, we analyze the effect of the ensemble size (the number of ensemble learners) on our
methods. For EDST Ensemble, we fix the total training time and vary the total number of ensemble
learners M. The larger ensemble size M leads to shorter training time of each ensemble learner. For
DST Ensemble, we simply train a different number of individual sparse models from scratch and
report the ensemble performance.
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Figure 5: Performance of the subnetworks and the en-
semble of subnetworks as the ensemble size M varies
(Wide ResNet28-10 on CIFAR-10).

The results are shown in Figure 5. “Individ-
ual Subnetworks” refers to the averaged accu-
racy of single subnetworks learned by DST and
EDST. The prediction accuracy of DST Ensem-
ble keeps increasing as the ensemble size in-
creases, demonstrating the benefits of ensemble.
As expected, the predictive accuracy of individ-
ual EDST subnetworks decreases as the ensem-
ble size M increases likely due to the insufficient
training time of each subnetwork. Nevertheless,
the ensemble performance of EDST is still quite
robust to the ensemble size. Specifically, despite
the poor individual performance with M = 7,
the ensemble prediction is still higher than a sin-
gle dense model. This behavior confirms our hypothesis mentioned before, i.e., multiple free tickets
work better than one high-quality winning ticket or even a dense network.

5.6 EXPERIMENTS WITH OOD AND ADVERSARIAL ROBUSTNESS

We further test the performance of FreeT ickets on out-of-distribution (OoD) detection and adver-
sarial robustness, reporting the results in Appendices K and L, respectively. Our proposed ensemble
methods also bring benefits to OoD performance and adversarial robustness.

6 CONCLUSION AND FUTURE WORKS

We introduce FreeT ickets, an efficient way to boost the performance of sparse training over the
dense network, even the dense ensemble. FreeT ickets is built as a combination of the diverse
subnetworks extracted during dynamic sparse training and achieves a co-win in terms of accuracy,
robustness, uncertainty estimation, as well as training/inference efficiency. We demonstrate for the
first time that DST methods may not match the performance of dense training when standalone, but
can surpass the generalization of dense solutions (including the dense ensemble) as an ensemble,
while still being more efficient to train than a single dense network.

The aforementioned compelling efficiency has not been fully explored, due to the limited support of
the commonly used hardware. Fortunately, some prior works have successfully demonstrated the
promising speedup of sparse networks on real mobile processors (Elsen et al., 2020), GPUs (Gale
et al., 2020), and CPUs (Liu et al., 2020a). In future work, we are interested to explore sparse
ensembles on hardware platforms for real speedups in practice.
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7 REPRODUCIBILITY

The training configurations and hyperparameters used in this paper are shared in Appendix C. The
metrics used to enable comparisons among different methods are given in Appendix D. We have
released our source code at https://github.com/VITA-Group/FreeTickets.
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A DYNAMIC SPARSE TRAINING

In this Appendix, we describe the full details of dynamic sparse training. See the survey of Mocanu
et al. (2021) and (Hoefler et al., 2021) for more details.

A.1 ALGORITHM

Dynamic Sparse Training (DST) (Mocanu et al., 2018; Liu et al., 2020a) is a class of methods that
enable the end-to-end training of sparse neural networks. DST starts from a sparse network and
simultaneously optimizes the sparse connectivity and model weights during training. Without loss
of generality, we provide the general pseudocode of DST that can cover most of the existing DST
methods in Algorithm 1.

While there is an upsurge in increasingly efficient ways for sparse training (Bellec et al., 2018; Mostafa
& Wang, 2019; Dettmers & Zettlemoyer, 2019; Evci et al., 2020a; Liu et al., 2021b; Jayakumar et al.,
2020; Liu et al., 2021c; Dietrich et al., 2021; Chen et al., 2021a), most of DST methods contain three
key components: sparse initialization, model weight optimization, and parameter exploration. We
explain them below.

Algorithm 1 Dynamic Sparse Training

Require: Network fΘ, dataset {xi, yi}Ni=1, Layer-wise sparsity ratio: S, Update Interval ∆T, Explo-
ration Rate p

1: # Sparse Initialization
2: f(x;θs)← f(x;θ;S)
3: for each training step t do
4: # Model Weight Optimization
5: f(x;θs)← SGD(f(x;θs))
6: if (t mod ∆T) = 0 then
7: # Parameter Exploration
8: Pruning p percentage of parameters using Eq. 1
9: Growing p percentage of parameters using Eq. 2

10: Update exploration rate p
11: end if
12: end for

A.1.1 SPARSE INITIALIZATION

Layer-wise Sparsity Ratio. Layer-wise sparsity ratio plays an important role for sparse training.
Mocanu et al. (2018) first introduced Erdős-Rényi (ER) (Erdős & Rényi, 1959) from graph theory
to the field of neural networks, achieving better performance than the uniform sparsity ratio. Evci
et al. (2020a) further extended ER to CNN and brings significant gains to sparse CNN training
with the Erdős-Rényi-Kernel (ERK) ratio. Specifically, the sparsity level of layer l is scaled with
1− nl−1+nl+wl+hl

nl−1×nl×wl×hl , where nl refers to the number of neurons/channels of layer l; wl and hl are the
width and the height of layer l. Works with weight redistribution (Mostafa & Wang, 2019; Dettmers &
Zettlemoyer, 2019; Liu et al., 2021b) start with the uniform layer-wise ratio and dynamically change
the layer-wise ratio according to heuristic criteria, ending up with non-uniform layer-wise ratios.

Weight Initialization. Weight initialization also affects the performance of sparse training. Unlike
the dense network, sparse networks contain a partial of weights to be zero, breaking the appealing
properties of dense initialization such as dynamical isometry (Lee et al., 2020), gradient flow (Evci
et al., 2020b; Tessera et al., 2021), etc.

A.1.2 MODEL WEIGHT OPTIMIZATION

After initializing the sparse model, we need to optimize the model weights to minimize the loss
function. In general, dynamic sparse training is compatible with the most widely used optimizers,
e.g., minibatch stochastic gradient descent (SGD) (Robbins & Monro, 1951), minibatch stochastic
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gradient descent with momentum (Sutskever et al., 2013; Polyak, 1964), and Adam (Kingma & Ba,
2014).

However, we need to pay extra attention to average-based optimizers, such as Averaged Stochastic
Gradient Descent (ASGD), which is widely used in the language modeling tasks with RNNs and
LSTMs. Liu et al. (2021b) points out that ASGD seriously destroys the sparse connectivity opti-
mization since the average operation brings the newly-grown weights immediately to zero, leading
to an over-pruning situation. Moreover, Tessera et al. (2021) shows that optimizers that use an
exponentially weighted moving average (EWMA) are sensitive to high gradient flow.

A.1.3 PARAMETER EXPLORATION

Dynamic sparse training outperforms static sparse training mainly due to the parameter explo-
ration (Liu et al., 2021c). One simple yet effective heuristic used here is prune-and-grow. Removing
p percentage of the existing weights and regrowing the same number of new weights allows DST to
gradual optimize the sparse connectivity in a heuristic way.

Weight Prune: Although there exists various pruning criteria in pruning literature, the most common
way for DST is the simple magnitude pruning. We also tried other criteria for pruning at initialization
e.g., SNIP (Lee et al., 2019), GraSP (Wang et al., 2020), SynFlow (Tanaka et al., 2020). All of them
fall short of the accuracy achieved by magnitude pruning.

Weight Grow: The most common ways to grow new weights are random-based growth (proposed in
SET (Mocanu et al., 2018)) and gradient-based growth (proposed in RigL (Evci et al., 2020a) and
SNFS (Dettmers & Zettlemoyer, 2019)). Random-based growth ensures purely sparse forward pass
and backward pass, while it very likely needs more steps to find the important connections, especially
for the very extreme sparsities. Gradient-based growth detects the weights that reduce the current
loss the fastest, whereas it involves the dense gradient calculation and is likely to cause a collapse of
the explored parameter space (Liu et al., 2021b;c; Dietrich et al., 2021).

It is worth noting that the choice of when-to-explore is also of importance for DST. The number of
training iterations between two parameter explorations is controlled by the update interval ∆T. Since
the newly-grown weights are initialized to zero, a large ∆T is necessary to guarantee that the new
weights receive enough weight updates to survive at the next pruning iteration (Liu et al., 2021c).
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B PSEUDOCODE OF DST ENSEMBLE AND EDST ENSEMBLE

Algorithm 2 DST Ensemble

Require: network fΘ, dataset {xi, yi}Ni=1, ensemble size M, sparsity distribution S, update interval
∆T, DST exploration rate p, training time of each free ticket T .

1: for j = 1 to M do
2: # Sparse Initialization
3: f(x;θjs)← f(x;θj ;S)
4: for t = 1 to T do
5: # Model Weight Optimization
6: f(x;θjs)← SGD(f(x;θjs))
7: if (t mod ∆T) = 0 then
8: # DST Parameter Exploration
9: DST parameter exploration using Eq. 1 & 2 with p

10: Update exploration rate p
11: end if
12: end for
13: Save the converged sparse subnetwork f(x;θjs)
14: end for

Algorithm 3 EDST Ensemble

Require: network fΘ, dataset {xi, yi}Ni=1, ensemble size M, sparsity distribution: S,
update interval ∆T, DST exploration rate p, global exploration rate q, training time of the
exploration phase tex, training time of each refinement phase tre/M

1: # Sparse Initialization
2: f(x;θs)← f(x;θ;S)
3: # One Exploration Phase
4: for t = 1 to tex do
5: f(x;θs)← SGD(f(x;θs))
6: if (t mod ∆T) = 0 then
7: DST parameter exploration using Eq. 1 & 2 with p
8: end if
9: end for

10: # M Sequential Refinement Phases
11: for j = 1 to M do
12: for t = 1 to tre/M do
13: f(x;θjs)← SGD(f(x;θjs))
14: if (t mod ∆T) = 0 then
15: DST parameter exploration using Eq. 1 & 2 with p
16: end if
17: end for
18: Save f(x;θjs) and escape by parameter exploration using Eq. 1 & 2 with q
19: end for
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C IMPLEMENTATION AND HYPERPARAMETERS

In this Appendix, we provide the hyperparameters used in Section 4.

We mentioned in the main content of paper that these free tickets (subnetworks) are non-trivial to
obtain due to the three key desiderata. To confirm this, we implement and test two sparsity-based
efficient ensemble methods, Static Sparse Ensemble and Lottery Ticket Hypothesis (LTR) Ensemble.

Static Sparse Ensemble Static Sparse Ensemble refers to directly training M sparse subnetworks
from scratch and ensemble them for test. Even though it naturally satisfies the low training cost and
high diversity, its insufficient accuracy leads to worse performance than the proposed DST/EDST
Ensemble.

LTR Ensemble Following Evci et al. (2020b), we use gradual magnitude pruning (GMP) (Zhu &
Gupta, 2017; Gale et al., 2019) for LTR, which is a well studied and more efficient pruning method
than iterative magnitude pruning (IMP). Concretely, we first use gradual magnitude pruning to prune
the dense network to the target sparsity. After that, we retrain and rewind the subnetworks to the 5%
epoch for M times. The converged subnetworks are further used for ensemble. Note that even GMP
is much more efficient than IMP, the overall training FLOPs required by this method is much higher
than directly training a single dense model. We expect that using IMP for Ensemble can be more
accurate, but also leads to prohibitive training costs, in contrary to our pursuit of efficient ensemble.

PF Ensemble For the pruning baseline, we choose the strong techniques – global magnitude
pruning. We first prune three independently pre-trained dense networks (each is trained for 250
epochs) to the target sparsity, and then fine-tune them for another 250 epochs with different random
seeds. We believe this setting can provide enough diversity as all the training procedures are
independent, with different random seeds.

Hyperparameters of DST Ensemble For a fair comparison, we follow the training configuration
of MIMO. For Wide ResNet28-10 on CIFAR, we train the sparse model for 250 epochs with a
learning rate of 0.1 decayed by 10. We use a batch size of 128, weight decay of 5e-4. To achieve
a good trade-off between ensemble accuracy and sparsity, we set sparsity as S = 0.8. Regarding
the hyperparameters of DST, we choose a large update interval ∆T = 1000 between two sparse
connectivity updates and a constant DST exploration rate p = 0.5.

For ResNet-50 on ImageNet, to the best of our knowledge, all the state-of-the-art DST approaches can
not match the performance of the dense ResNet-50 on ImageNet within a standard training time. To
guarantee sufficient predictive accuracy for the individual ensemble learners, we follow the training
setups used in Liu et al. (2021c) and train each sparse ResNet-50 for 200 epochs with a batch size of
64. The learning rate is linearly increased to 0.1 with a warm-up in the first 5 epochs and decreased
by a factor of 10 at epochs 60, 120, and 180. Even with a longer training time, it takes much fewer
FLOPs to train sparse networks using DST compared to the dense network. We choose ∆T = 4000
and a cosine annealing schedule for the exploration rate with an initial value p = 0.5.

Hyperparameters of EDST Ensemble For Wide ResNet28-10 on CIFAR, we train the 80% sparse
model for 450 epochs and 90% sparse model for 850 epochs with tex = 150, tre = 100, so that we
can get M = 3 subnetworks with sparsity of 0.8 and M = 7 subnetworks with sparsity of 0.9 for
ensemble. The numbers of training FLOPs of this two settings are similar due to the different sparsity
levels. The DST exploration rate is chosen as p = 0.5 which achieves the best performance as shown
in (Evci et al., 2020a; Liu et al., 2021c). To encourage a large diversity between ensemble learners,
we use a large global exploration rate q = 0.8 to force the subnetowrk escape the current basin. We
have also tested a larger exploration rate, i.e., q = 0.9. The results are similar with q = 0.8.

For ResNet-50 on ImageNet, we set tex = 30 and tre = 70 so that we can obtain M = 2 subnetworks
with 170 epochs and M = 4 subnetworks with 310 epochs, respectively. We set p = 0.5 and q = 0.8.
The rest of hyperparameters are the same as DST Ensemble. Due to the limited resources, we only
test the 80% sparsity for ResNet-50. We believe that the ensemble performance can further improve
with lower sparsity.
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D EXPERIMENTAL METRICS

To measure the predictive accuracy and robustness, we follow the Uncertainty Baseline4 and focus
on test accuracy (Acc), negative log-likelihood (NLL), and expected calibration error (ECE) on the
i.i.d. test set, corrupted test sets (i.e., CIFAR-10-C and ImageNet-C) (Hendrycks & Dietterich, 2019)
which contain 19 natural corruptions such as added blur, compression artifacts, frost effects, etc, as
well as on the natural adversarial samples (i.e., ImageNet-A) (Hendrycks et al., 2019). We adopt
{cAcc, cNLL, cECE} and {aAcc, aNLL, aECE} to denote the corresponding metrics on corrupted
test sets and natural adversarial samples, respectively.

Negative log-likelihood (NLL) is a proper scoring rule and a popular metric for evaluating predictive
uncertainty (Quinonero-Candela et al., 2005).

Expected Calibration Error (ECE) (Naeini et al., 2015), is a widely adopted metric to approximate
the difference in expectation between confidence and accuracy of machine learning models (i.e.,
miscalibration). Specifically, it partitions predictions into M equally-spaced bins, and then calculates
a weighted average of the accuracy/confidence discrepancy in each of these bins. Larger ECE values
represent a worse match between confidence and accuracy.

To compare the computational efficiency, we report the training FLOPs required to obtain the targeted
number of subnetworks for all methods and normalize them with the FLOPs required by a dense
model. Following RigL5 (Evci et al., 2020a), the FLOPs are calculated with the total number of
multiplications and additions layer by layer. Briefly speaking, with ERK distribution, the training
FLOPs of a sparse Wide ResNet28-10 at sparsity S = 0.8 and S = 0.9 are 33.7% and 16.7% of the
dense model, respectively. For sparse ResNet-50 at S = 0.8, the required training FLOPs is 42%
of the dense model. We omit the additional computational cost for the extra inputs and the extra
outputs of MIMO, as it is negligible compared with the whole training FLOPs. Moreover, we suppose
the hardware can fully utilize large batch size so that BatchEnsemble incurs almost no additional
computational overhead and memory cost.

E COMPARISON WITH SNAPSHOT AND FGE

In this Appendix, we compare our methods with the ensemble methods that use cyclical learn-
ing rate schedules to discover diverse dense networks, i.e., Snapshot (Huang et al., 2017) and
FGE (Garipov et al., 2018). For a relatively fair comparison, we compare our methods with their
‘1B’ versions (Garipov et al., 2018) which have similar training FLOPs with our methods. However,
their test FLOPs would be much larger as their ensemble members are dense networks. As shown
in Table 6, while achieving relatively similar performance, Snapshot and FGE require significantly
more test FLOPs than the DST-based ensemble methods.

Table 6: Comparison between DST-based ensemble methods with Snapshot (Huang et al., 2017) and
FGE (Garipov et al., 2018). The experiments are conducted with Wide ResNet28-10 on CIFAR-10/100.

Methods Sparsity # Training
FLOPs (↓)

# Test
FLOPs (↓)

Acc
CIFAR-10 (↑)

Acc
CIFAR-100 (↑)

Snapshot (M = 12) 0 0.80× 12.00× 96.27 82.10
FGE (M = 5) 0 0.80× 5.00× 96.35 82.30
EDST Ensemble (M = 7) (Ours) 0.9 0.57× 1.17× 96.10 82.60
EDST Ensemble (M = 3) (Ours) 0.8 0.61× 1.01× 96.30 82.20
DST Ensemble (M = 3) (Ours) 0.8 1.01× 1.01× 96.30 83.30

4https://github.com/google/uncertainty-baselines
5More details can be found in the official repository of RigL https://github.com/

google-research/rigl/tree/master/rigl/imagenet_resnet/colabs
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F PREDICTION DISAGREEMENT ON CIFAR-10/100

We compare the prediction disagreement among the naive dense ensemble, DST Ensemble with
sparsity S = 0.8, EDST Ensemble with sparsity S = 0.8 and S = 0.9. The comparison results
on CIFAR-10 and CIFAR-100 are shown in Figure 6 and Figure 7, respectively. We find that
the subnetworks discovered by DST Ensemble are even more diverse than the ones discovered
by the traditional dense ensemble, confirming our hypothesis that dynamic sparsity can provide
extra diversity in addition to random initializations. While the average functional diversity of the
subnetworks discovered by EDST Ensemble is a bit lower compared with DST Ensemble, the diversity
is still notable. Moreover, as expected, at a higher sparsity S = 0.9, the prediction diversity of EDST
Ensemble slowly rises as the ensemble size M increases, and ends up with a similar diversity as the
Dense Ensemble.
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(d) EDST Ensemble (S=0.9)

Figure 6: Prediction disagreement between ensemble learners with Wide ResNet28-10 on CIFAR-10. Each
subfigure shows the fraction of labels on which the predictions from different ensemble learners disagree.
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(c) EDST Ensemble (S=0.8)
1 2 3 4 5 6 7

7
6

5
4

3
2

1

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

(d) EDST Ensemble (S=0.9)

Figure 7: Prediction disagreement between ensemble learners with Wide ResNet28-10 on CIFAR-100. Each
subfigure shows the fraction of labels on which different ensemble learners disagree.
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G DISAGREEMENT BREAKDOWN BETWEEN VARIOUS SPARSE NETWORK
ENSEMBLES ON CIFAR-100

In this Appendix, we try to provide a detailed illustration about various classes that cause the
disagreement between various sparse network ensembles. We choose the first 10 classes in CIFAR-
100 and measure the disagreement between the subnetworks learned by the same method on these
classes. The results are shared in Table 7. The overall breakdown of disagreement is very similar to
the diversity measurement results, i.e., DST Ensemble > Static Ensemble > EDST Ensemble > LTR
Ensemble. The prediction on classes like Fish, Baby, and Bear have higher diversity than Apple and
Beetle.

Table 7: Disagreement Breakdown of various sparse network ensembles, including LTR Ensemble, Static
Ensemble, EDST Ensemble, and DST Ensemble, on CIFAR-100.

Class Apple Aquarium Fish Baby Bear Beaver Bed Bee Beetle Bicycle

LTR Ensemble 0.027 0.063 0.140 0.170 0.157 0.070 0.127 0.110 0.027 0.030
EDST Ensemble 0.043 0.067 0.153 0.187 0.137 0.090 0.107 0.080 0.027 0.067
Static Ensemble 0.077 0.090 0.220 0.180 0.227 0.157 0.120 0.097 0.047 0.073
DST Ensemble 0.057 0.080 0.227 0.277 0.230 0.137 0.160 0.133 0.053 0.093

H CORRELATION MEASUREMENT BETWEEN THE ACCURACY OF
SUBNETWORKS AND THEIR ENSEMBLE ACCURACY

In the main paper, we hypothesize that high expressibility is a crucial desideratum for FreeT ickets to
guarantee superior ensemble performance. Here, we apply two widely used correlation measurements,
Pearson correlation (Pearson, 1895) and Spearman correlation (Powers & Xie, 2008), to support our
hypothesis. We use these two methods to measure the correlation between the mean accuracy of
individual networks and the accuracy of their ensemble (higher values refer to higher correlation).
The results are shared in Table 8. We find that the individual accuracy and the ensemble accuracy are
very highly correlated on CIFAR-100. Their correlation is relatively low on CIFAR-10 likely due to
the almost saturated accuracy of the individual subnetwork (96%). Given such high accuracy, even
the usually clear and strong correlation between the sparsity and test accuracy becomes relatively
vague on CIFAR-10 in Figure 4-a and Figure 4-b.

Table 8: Correlation between the mean accuracy of individual networks and the accuracy of their ensemble.

Methods Wide ResNet28-10/CIFAR10 Wide ResNet28-10/CIFAR100

Pearson Correlation Spearman Correlation Pearson Correlation Spearman Correlation

EDST Ensemble 0.459 0.257 0.979 0.829
DST Ensemble 0.332 0.319 0.972 0.812
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I EFFECT OF THE GLOBAL EXPLORATION RATE ON EDST ENSEMBLE

Intuitively, a larger global exploration rate q leads to larger sparse connectivity diversity whereas a
too large q would prune the important connections, hurting the ensemble accuracy. We perform a
sensitivity study with EDST Ensemble in Table 9, whose results are in line with our conjecture. A
large global exploration rate q = 0.8 promote higher diversity but degrades the ensemble accuracy a
bit compared with q = 0.5. q = 0.5 seems to achieve the best ensemble performance.

Table 9: Effect of Exploration Rate q on EDST Ensemble. “Acc” refers to the ensemble accuracy.

Wide ResNet28-10/CIFAR10 Wide ResNet28-10/CIFAR100

Different choices of q ddis (↑) dKL (↑) Acc (↑) ddis (↑) dKL (↑) Acc (↑)

q = 0.1 0.028 0.070 96.2 0.109 0.217 82.14
q = 0.5 0.031 0.072 96.3 0.125 2.223 82.34
q = 0.8 0.033 0.073 96.3 0.127 0.237 82.20

J EFFECT OF REGROWTH METHODS ON EDST ENSEMBLE

Random regrowth naturally considers a larger range of parameters to explore compared to the gradient
regrowth as used in the main paper. We added below a small set of experiments to study different
growth criteria (random vs gradients) on the EDST Ensemble. As shown in Table 10, it seems that
random growth may provide more diversity and better performance for more complex datasets (i.e.,
CIFAR-100), but more studies are necessary to understand the phenomenon better.

Table 10: Effect of regrowth methods on EDST Ensemble. We compare gradient regrowth and random regrowth.
“Individual Acc” refers to the averaged test accuracy of subnetworks discovered by different ensemble methods.
“Acc” refers to the ensemble accuracy.

Wide ResNet28-10/CIFAR10 Wide ResNet28-10/CIFAR100

Methods Individual Acc ddis (↑) dKL (↑) Acc (↑) Individual Acc ddis (↑) dKL (↑) Acc (↑)

Random growth 95.64 0.031 0.072 96.2 81.01 0.129 0.231 82.4
Gradient growth 95.75 0.031 0.073 96.3 81.09 0.126 0.237 82.2
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K EXPERIMENTS WITH OOD RESULTS

In this section, we report the performance of OoD detection for single sparse networks and ensemble
models. Specifically, we use datasets that are not seen during training time for OoD evaluation.
Following the classic routines (Augustin et al., 2020; Meinke & Hein, 2019), SVHN (Netzer et al.,
2011), CIFAR-100 (Krizhevsky & Hinton, 2009), and CIFAR-10 with random Gaussian noise (Hein
et al., 2019) are adopted for models trained on CIFAR-10 (Krizhevsky & Hinton, 2009); SVHN,
CIFAR-10, and CIFAR-100 with random Gaussian noise are used for models trained on CIFAR-100.
The ROC-AUC performance (Augustin et al., 2020; Meinke & Hein, 2019) are reported over the
respective out of distribution datasets, as shown in Table 11 and Table 12. As we expected, our
proposed ensemble methods provide gains to the OoD performance. DST Ensemble and EDST
Ensemble can even surpass the dense models by a clear margin in most cases.

Table 11: The ROC-AUC OoD performance for Wide ResNet-28-10 trained on CIFAR-10.

Methods OOD dataset for CIFAR-10 trained models

SVHN CIFAR-100 Gaussian Noise

Static Sparse Ensemble (M = 1) (S = 0.8) 0.8896 0.8939 0.9559
Static Sparse Ensemble (M = 3) (S = 0.8) 0.9229 0.9082 0.9910

DST Ensemble (M = 1) (S = 0.8) 0.9082 0.8957 0.9964
DST Ensemble (M = 3) (S = 0.8) 0.9533 0.9114 0.9969

EDST Ensemble (M = 1) (S = 0.8) 0.9461 0.8895 0.9607
EDST Ensemble (M = 3) (S = 0.8) 0.9487 0.9045 0.9928
EDST Ensemble (M = 1) (S = 0.9) 0.9439 0.8955 0.9817
EDST Ensemble (M = 7) (S = 0.9) 0.9658 0.9115 0.9956

Single Dense Models 0.9655 0.8847 0.9803

Table 12: The ROC-AUC OoD performance for Wide ResNet-28-10 trained on CIFAR-100.

Methods OOD dataset for CIFAR-100 trained models

SVHN CIFAR-10 Gaussian Noise

Static Sparse Ensemble (M = 1) (S = 0.8) 0.7667 0.8004 0.7858
Static Sparse Ensemble (M = 3) (S = 0.8) 0.8165 0.8141 0.9560

DST Ensemble (M = 1) (S = 0.8) 0.8284 0.8019 0.8131
DST Ensemble (M = 3) (S = 0.8) 0.8207 0.8221 0.8865

EDST Ensemble (M = 1) (S = 0.8) 0.7481 0.7941 0.8736
EDST Ensemble (M = 3) (S = 0.8) 0.8585 0.8137 0.9046
EDST Ensemble (M = 1) (S = 0.9) 0.7990 0.7937 0.8097
EDST Ensemble (M = 7) (S = 0.9) 0.8092 0.8148 0.9436

Single Dense Models 0.7584 0.8045 0.7374
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L EXPERIMENTS WITH ADVERSARIAL ROBUSTNESS

Table 13 presents the adversarial robustness performance of Wide ResNet-28-10 trained on CIFAR0-
10 and CIFAR-100, where the Fast Gradient Sign Method (FGSM) (Szegedy et al., 2013) with step
size 8

255 is adopted. Following a similar routine as in Strauss et al. (2017), we craft adversarial
examples for each single model and report the {min, mean, max} robust accuracy over generated
attacks from different models. The results demonstrate that our proposed ensemble methods improve
robustness accuracy as well, especially in terms of average robust accuracy. More surprisingly, the
ensemble of static sparse models can even outperform DST-based Ensembles in this setting. Further
analysis on this task serves as interesting future work.

Table 13: The robust accuracy (%) for Wide ResNet-28-10 trained on CIFAR-10 and CIFAR-100.

Methods Robust Accuracy (%) {min/mean/max}
CIFAR-10 CIFAR-100

Static Sparse Ensemble (M = 1) (S = 0.8) 33.68/38.40/41.29 11.89/15.21/17.01
Static Sparse Ensemble (M = 3) (S = 0.8) 39.28/39.46/39.77 16.44/16.81/17.19

DST Ensemble (M = 3) (S = 0.8) 37.30/38.49/39.12 14.96/15.59/15.90
EDST Ensemble (M = 3) (S = 0.8) 39.66/40.35/41.00 13.00/13.19/13.56
EDST Ensemble (M = 7) (S = 0.9) 35.68/37.74/38.67 14.45/14.93/15.56

Single Dense Models 44.20 11.82
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